Outline

- Motivation
- Poseidon Implementation
- Results
- Future work & Discussion
- Quick Demo
Motivation
Deep Learning is time consuming

Qualitative Changes
- Larger dataset
- Deeper networks
- Less time
- Less Money
Goal

• Scale DL training to distributed GPU cluster
BackPropagation\text{(Mini\text{-}batch)}

\[A^{(t)} = A^{(t-1)} + \epsilon \cdot \sum_i \nabla(A^{(t-1)}, D_i) \]

- A: weights
- Di: training sample i
BackPropagation(Mini-batch)

\[A^{(t+1)} = A^{(t)} + \epsilon \sum_{p=1}^{P} \nabla_{\ell}(A^{(t)}, D^{(t)}_p) \]

- **A**: weights
- **P**: workers
- **D_p**: batch of training samples in worker p
Training Iteration

$$[C_t, S_t] = [f_t^1, \cdots, f_t^L, b_t^L, \cdots, b_t^1, s_t^L, \cdots, s_t^1]$$

$$s_t^l = [o_t^l, i_t^l]$$

- C_t: computation process in t
 - $f_t + b_t$ (forward + backward)
- S_t: synchronization process in t
 - $o_t + i_t$ (push + pull)
Poseidon Idea I

- Wait-free Backprop (WFBP)
- Layer by layer backprop
- Overlap Ct and St
- Improve GPU utilities
AlexNet (61.5M parameters)
Titan X GPUs
Batch size 256
240Mi/s

Cost: 240Mi * sizeof(float)
= 840 MB/s
> Commercial Ethernet Bandwidth
Poseidon Idea II

- Hybrid Communication
 - Honer PS
 - Honer SFB
- Self-estimated for different layers
Sufficient Factor Broadcasting

- Communication Cost
 - PS: $2 \times \text{#workers} \times w \times h$ (optimal for big cluster size and small W)
 - SFB: $2 \times k \times (w + h) \times \text{#workers} \times \text{#workers}$ (optimal for large matrix W between FCLs)

- k: batch size, w: #row, h: #column
Implementation
Algorithm 1 Get the best communication method of layer l

1: function METHOD($layer$ l)
2: $layer$.property = Query(l, 'property')
3: n_1, n_2, k = Query('n_worker', 'n_server', 'batchsize')
4: if $layer$.property.type != 'FC' then
5: return 'PS'
6: else
7: $w = layer$.property.width
8: $h = layer$.property.height
9: if $2k(n_1 - 1)(w + h) \leq 4wh(n_2 - 1)/n_2$ then
10: return 'SFB'
11: else
12: return 'PS'
13: end if
14: end if
15: end function

Algorithm 2 Parallel training at worker p

1: function TRAIN(net)
2: for $iter = 1 \rightarrow T$ do
3: $sync_count = 0$
4: net.Forward()
5: for $l = L \rightarrow 1$ do
6: net.BackwardThrough(l)
7: job.queue.Push.back(l)
8: if $thread_pool$.size() < max_thread then
9: thread_pool.Push.back(&$sync_job$)
10: end if
11: end for
12: while $sync_count < net.num_trainable$ do
13: wait()
14: end while
15: end function

function SYNC_JOB()

16: stream = stream_pool.Allocate()
17: while 1 do
18: $l = job_queue$.Wait_and_pop()
19: syncers[l].Move(stream, GPU2CPU)
20: syncers[l].method = coordinator.Best_Method(l)
21: syncers[l].Send()
22: syncers[l].iter++
23: syncers[l].Receive()
24: syncers[l].Move(stream, CPU2GPU)
25: $sync_count++$
26: end while
27: end function
Results
Scalability

Figure 4. Throughput scaling when training (a) GoogLeNet (b) VGG19 (c) VGG19-22K using Poseidon-parallelized Caffe and 40GbE bandwidth. The throughput of original Caffe on a single GPU is set as baseline (i.e. speedup = 1).
Scalability (cont’d)

Figure 5. Throughput scaling when training (a) Inception-V3 (b) VGG19 (c) VGG19-22K using Poseidon-parallelized TensorFlow and 40GbE bandwidth. The throughput of original TensorFlow on a single GPU is set as baseline.
Figure 6. Throughput scaling when training (a) GoogLeNet (b) VGG19 (c) VGG19-22K using Poseidon-parallelized Caffe with varying network bandwidth. The throughput of original Caffe on a single GPU is set as baseline (speedup = 1).
Bandwidth (cont’d)

Figure 7. Breakdown of computation and stall time of GPUs when training Inception-V3, VGG19 and VGG19-22K on 8 machines using different systems.
Future Work & Discussion
• Discussion

• How to apply Poseidon to Chain-like nets?

• How to reduce communication time further for low bandwidth, network congestion?
 • More communication strategies for different layers

• How to estimate communication cost for dynamic nets?
 • Simple high-level interface
 • ML classifier to dispatch

• How does industry companies manage GPU clusters?
 • Shared Cluster environment(docker bind)
 • SAAS users
Future Work

- New backend design and implement
 - Dynamic nets (e.g. dynet) integration
 - General purpose ML models
 - Optimize unsupervised, reinforcement learning models
- Distributed logic refactor and extend
- Cluster management
 - GPU, Memory
- Other devices
Conclusion

• Scalable efficient communication library for distributed DL

• Easy to plug in(impl) Caffe, TensorFlow, MxNet...

• Reference: Hao and Zeyu’s paper!

• Try it out at http://poseidon-release.readthedoc
Release Status

- Implemented in TensorFlow 0.10
- Similar develop interface with tf
- Refined Keras Interface (TODO)
- Deployment ready
 - wheels
 - AMIs
 - rpm, deb packages (TODO)
Quick Demo
Thanks